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Abstract. In this paper we show how to carry out an automatic alignment of a pan-tilt camera platform with
its natural coordinate frame, using only images obtained from the cameras during controlled motion of the unit.
An active camera in aligned orientation represents the zero position for each axis, and allows axis odometry to
be referred to a fixed reference frame; such referral is otherwise only possible using mechanical means, such
as end-stops, which cannot take account of the unknown relationship between the camera coordinate frame and
its mounting. The algorithms presented involve the calculation of two-view transformations (homographies or
epipolar geometry) between pairs of images related by controlled rotation about individual head axes. From these
relationships, which can be calculated linearly or optimised iteratively, an invariant line to the motion can be
extracted which represents an aligned viewing direction. We present methods for general and degenerate motion
(translating or non-translating), and general and degenerate scenes (non-planar and planar, but otherwise unknown),
which do not require knowledge of the camera calibration, and are resistant to lens distortion non-linearity.Detailed
experimentation in simulation, and in real scenes, demonstrate the speed, accuracy, and robustness of the methods,
with the advantages of applicability to a wide range circumstances and no need to involve calibration objects or
complex motions. Accuracy of within half a degree can be achieved with a single motion, and we also show how
to improve on this by incorporating images from further motions, using a natural extension of the basic algorithm.
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1. Introduction

An active camera is any camera with robotic control
of its position or orientation, the most common variety
being a camera mounted on a pan-tilt unit or ‘head’.
Such devices are becoming increasingly common, par-
ticularly for use as surveillance devices. Often these
cameras are used to measure the bearing to an object in
the field of view of the camera. The motivation behind
our work is the use of stereo cameras on a navigating
robot to triangulate the position of scene objects for
localisation (Davison, 1998; Knight, 2002). However
there are other applications, such as in steering control

where the bearing to an object can be used as an input
to a control law (Murray et al., 1996, 1997); or tracking
applications in which the camera must at least be ca-
pable of relating an image distance to a rotation angle,
and be able to rotate by that angle with some accuracy
in order to track an object. In most of these situations
the active camera platform, or head, will need some
frame of reference for its motion. It will need to be
able to answer questions such as “when am I facing
forwards?” or “when am I horizontal?”. This is the
problem of alignment, which, put simply, is the pro-
cess of establishing the angular position of each axis
with respect to some fixed origin. When this is done,
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Figure 1. The Yorick stereo pan-tilt head (Sharkey et al., 1993),
and robot GTI, used for visual navigation.

image measurements can be referred back to a coordi-
nate system fixed in the head rather than moving with
the camera.

One way to tackle alignment is to use some kind
of absolute odometry system, which will usually take
the form of end stops or switches from which the origin
can be calculated repeatably. However, many heads, in-
cluding those used in our navigation system (see Fig. 1),
do not have such guides, the zero position being stored
in memory and therefore volatile. In this sort of head
other ways must be found to calculate the origin of the
head’s coordinate system. Another motivation to find
an alternative method is that switches and stops are
very specific to the hardware. It is preferable to find
a general algorithm that can be used regardless of the
exact hardware setup.

One might instead devise a way to align the head
manually, perhaps by eye, or using special measuring
devices. Not only may this be of dubious accuracy, but
a regular manual alignment may be tedious, or even
impossible if the head is being operated remotely.

Both these methods, end-stops and manual align-
ment, suffer from the additional deficiency that they

Figure 2. Aligning Yorick: in the zero position of the head’s natural coordinate frame, the vergence axes are set so that the cameras face
perpendicular to the elevation/tilt axis (b); the elevation axis is aligned so the cameras point perpendicular to the pan axis (c); and the pan axis
is aligned so the cameras face parallel to the robot’s forward direction (d). Aligning the pan axis (d) is application-specific, and not covered by
this paper.

work relative to the camera’s mechanical position, not
its internal coordinate system. Accurate alignment in-
volves moving the camera coordinate frame to a fixed
position, and that frame is defined by a camera centre
and optic axis which can only be approximately deter-
mined from external measurement of the camera.

In this paper we present instead a fully automatic
method which uses images as its input. By making
controlled motions of any angle (known or unknown)
about individual axes, we can calculate aligned direc-
tions as the horizon lines of planes defined by axis ori-
entations. This procedure can be carried out remotely
and will align the camera’s true coordinate frame, yet
places very few restrictions on the scene being viewed,
as well as being inherently a single camera solution.

1.1. A Definition of Alignment

The choice of origin for the aligned frame is primarily
of importance to the extent that it must be repeatably
obtainable with or without odometry via encoders. The
standard definition used here is the ‘natural’ frame in
which all head axes that control gaze direction lie per-
pendicular to the principal direction of the camera.1

The reasoning of this paper is quite general and ap-
plicable to most conceivable active camera configura-
tions, whether monocular or multi-ocular. For demon-
strations and simulations, however, we have used our
binocular head Yorick (Sharkey et al., 1993) as the ex-
ample. Fig. 2, for instance, illustrates what alignment
means in Yorick’s case; the annotations show planes
parallel to the direction in which the cameras must face
to zero each axis.

Figure 2’s description of an aligned position is of
course peculiar to Yorick’s pan-tilt-verge2 arrangement
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Figure 3. A diagram of the Yorick stereo head showing the offsets between the axes, and between the camera centres and axes, that make the
head non-ideal. In addition, not only will the camera centres not lie on the vergence axes, but there is no guarantee that the optic axes will pass
through them or lie perpendicular to them. In an ideal head this would be the case, and 1, 2 and 3 would be of zero length.

of the kinematic chain, with pan being first in the chain
and independent of other axes. This configuration is
typical, however others can be accounted for with sim-
ilar reasoning. Using the algorithm described in this
work, any axis not first in the kinematic chain can be
aligned as long as its zero position is a direction perpen-
dicular to an axis earlier in the chain. So a monocular
camera platform in pan-tilt configuration can align its
tilt axis; in a tilt-pan configuration it can only align
the pan axis. Other clues related to the hardware setup
must be used to align the first axis in the chain. In this
work we therefore look only at the general problem of
alignment of the other axes.

1.2. Previous Work

Alignment is a subset of the process of kinematic cal-
ibration. This is the process of calculating the pose
(position and orientation) of the cameras and the axes
of an active head. As illustrated by Fig. 3, the kinemat-
ics of a typical head may include unforeseen offsets.
The only real guarantee is that consecutive axes are
perpendicular, which is a basic design constraint for
most heads.

The important kinematic parameters for our pur-
poses are the alignment, which allows the gaze direc-
tions of the cameras to be determined, and the baseline,
which effectively defines the metric scale for triangula-
tion. This is because in our navigation application the
offsets between consecutive axes can feasibly be in-
corporated into an overall measurement error, whereas
errors in the alignment and baseline lead to a consistent
bias.

Determining the full kinematics is not addressed
directly in this paper, since it must be obtained via the

process of camera calibration, calculating the pose of
a camera from an image of a calibration object with
known metric structure (classical calibration), or from
multiple images of an unknown, but rigid object (self-
calibration). This is in fact how kinematic calibration
has been traditionally obtained, by calibrating the cam-
era before and after rotations about each axis, which
will give the relative position of that axis. Of the work
on image-based kinematic calibration, (Li, 1998), and
(DeSouza et al., 2002) made use of a calibration object
of known metric structure, with only (Ma, 1996) opting
for self-calibration based on multi-view relationships.

To test the validity of the calibration, these works
compared rotation angles provided by odometry to
those predicted by the kinematic model. Li (1998)
points out that this kind of kinematic calibration is only
valid in the ranges of motions where the calibration is
performed, and this motion must be small to ensure
that the calibration object remains in the field of view.
Consequently, even a small error could represent sev-
eral degrees of error in the axis orientations, since this
would not cause a large offset for a small motion. Un-
fortunately, it is the orientations of the axes, not their
positions, that are crucial for alignment.

McLauchlan and Murray (1996) implemented a se-
quential calibration algorithm for a monocular head
which operated in any scene using inter-image rela-
tionships, with rotation angles taken from head en-
coders and therefore known (unlike in our algorithm).
They simplified the problem by assuming the head axes
passed through a single point (i.e. it was ideal), and
over long runs achieved convergence to axis orienta-
tions with standard deviations of less than a degree.

Hayman et al. (2000) used an alternative method
involving making the assumption that the head
makes pure rotations about the camera centres.
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A self-calibration routine provides rotation matrices
representing the pose of the camera for each image in
a sequence. From these the aligned position can be
extracted. The process boils down to minimising the
cyclotorsion component of camera motion, which will
be zero for an aligned head since all axes lie perpendic-
ular to the camera’s optical axis. Hayman reports errors
of between 0.5◦ and 1◦ for sequences of 30 images.

All these methods extract a full kinematic calibration
rather than the alignment information alone. Instead,
we present a method that is based on a strong under-
standing of the visual geometry of the problem. This
will be shown to be simple, extract only the required
information, and fast in comparison to other methods.
The basic concept, that of determining the images of
lines invariant to head rotations, was originally put for-
ward by Reid and Beardsley (1996). This method re-
quired non-planar scene structure, stereo cameras, and
some computationally intensive computer vision such
as matching over four views and a 3D reconstruction of
the scene being viewed. We show that the underlying
geometry can be extracted in a considerably faster and
more accurate way using two-view transformations re-
lating images from a single camera. Our results extend,
improve upon, and evaluate more thoroughly ideas we
originally published in Knight and Reid (2000b).

2. The Algorithm and Geometrical Motivation

This paper requires the reader to have a basic under-
standing of projective geometry and multi-view rela-
tionships, including epipolar geometry and homogra-
phies. For more on these subjects, the reader is referred
to Hartley and Zisserman (2000), from which we also
take our notational conventions. This includes the use
of bold face for vectors (x, �), and teletype for matrices
(H, K).

Figure 4. Examples of cameras undergoing planar motion.

The algorithms we present rely on two premises:
the scene being viewed by the cameras is rigid,
and the motion of the cameras can be controlled
(meaning only that axes can be rotated individually,
not that rotations of known angles can be made).
Of particular importance is the ability to carry out a
planar motion. Planar motion has received special
attention in the literature (Armstrong, 1996; Hartley
and Zisserman, 2000; Beardsley and Zisserman,
1995; Zisserman et al., 1995; Horaud and Csurka,
1998) since it commonly occurs when using mo-
bile robots, which make motions along the ground
plane (Fig. 4(a)), and active heads, which execute
a planar motion when rotating about a single axis
(Fig. 4(b)). Naturally it is the latter that is of interest to
us.

A planar motion is defined as that for which the path
of any point lies in a single plane. An alternative is
to view any rigid body motion as rotation around, and
translation along, some axis in space, the screw axis.
A planar motion is one for which the translation, or
pitch of the screw, is zero. It is one of the invariants to
a planar motion, a fixed image line, that provides the
direction for aligning head axes.

2.1. Invariants to Planar Motion

Figure 5(a) shows the 3-space invariants to planar mo-
tion, namely:

– The screw axis, and every point on it.
– The set (or ‘pencil’) of planes perpendicular to the

screw axis
– The line on the plane at infinity that is the intersec-

tion of this pencil of planes, L.
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Figure 5. The (a) 3D and (b) image plane invariants to planar motion. In (b) the camera is represented as an optical centre and image plane,
with the dashed line indicating the image of the invariant plane that passes through the optical centres (i.e. its intersection with the image plane).
The optical axis, as in this case, need not lie in the invariant plane.

The images of some of these entities can be calculated
from two-view relationships, namely:

– A line, ls, the image of the screw axis. This is not a
line of fixed points or a fixed line, merely the image
of a line of fixed points.

– A fixed line, lh, the image of the invariant line at in-
finity L (Fig. 5(b)—the subscript ‘h’ is used by anal-
ogy with the horizon line). Alternatively, it can be
seen as the image of the invariant plane that passes
through the optical centre.

Figure 5 shows that during planar motion the opti-
cal centre lies on one of the invariant planes, moving
through it, which is why that plane is imaged as an in-
variant line. This also means that lh is an epipolar line.

These entities are entirely a result of the nature of
the motion, and therefore exist regardless of the scene
being imaged. The scene may, however, affect which
of the invariants can be calculated. One special case
motion is if the screw axis passes through the optical
centre, as is the case for rotations of the camera about
its centre (referred to here as ‘pure rotation’). In this
case the screw axis is imaged in a fixed point xv, the
intersection of the screw axis with the image plane, not
a line. Figure 6 shows how the invariants might appear
in the image in each case.

2.2. Geometric Intuition for Alignment

With the basic geometry understood the intuition for a
general alignment algorithm follows. The procedure to

align an axis A, which directly follows an axis B in the
kinematic chain, is to fixate the line at infinity invariant
to a motion about axis B. As Fig. 7 demonstrates, if the
camera’s principal direction is moved so that it passes
through this line at infinity (i.e.the line is fixated), that
principal direction will now lie in the pencil of planes
invariant to the motion, in other words the camera is
pointing perpendicular to the rotation axis, as required
for alignment. This can be done for each axis to be
aligned in turn, starting with the last axis in the kine-
matic chain if there are more than two (so, for instance,
it is no good aligning the pan axis if the vergence axis
is not already aligned).

The ‘principal direction’ of the camera need not nec-
essarily be the optic axis (although it would ideally be)
because the requirement is only that the calculation be
repeatable from any initial position. Therefore ‘fixa-
tion’ in our case means moving the target to the image
centre.3 A general alignment algorithm could be de-
fined as follows:

Algorithm 1. Generic Alignment Algorithm. To move
head axis A to an aligned position perpendicular to
axis B, move the camera about axis B alone. Based
on images from this motion, calculate the image of the
line at infinity invariant to the motion, and fixate any
point on it.

If we wish to align an axis of cyclorotation then this
can be done simultaneously with respect to head axis
B by adjusting the definition of ‘fixation’ to include
the rotation of the image plane to ensure the calculated
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Figure 6. Invariants to planar motion as they might be seen in the image (a) in the general case, and (b) if the motion is pure rotation. xv will
generally not be seen in the image (for a camera with a standard field of view) unless the motion involves considerable cyclotorsion (rotation
about the optic axis, i. e. the screw axis is directed towards the scene).

Figure 7. Illustrating the process of alignment. If the principal
direction is moved so as to coincide with the invariant line at infinity,
L∞ (it is fixated), then it will lie in an invariant plane. Consequently
the camera must be directed perpendicular to the axis of rotation, as
required.

horizon lies at the required orientation, passing through
the image centre, and either along or perpendicular to
an image scan line depending on whether axis B is a
pan or tilt (or other) axis. Again, any succeeding axes
in the kinematic chain that affect cyclotorsion must also
be aligned to avoid ambiguity.

In Reid and Beardsley (1996), Reid and Beardsley
showed how to obtain the necessary fixation lines by
calculating a 3D homography in projective 3-space.
However, we can now show that the invariant line can
be obtained from the 2D relationship between images
taken during the motion about a single axis, avoiding
the necessity of calculating projective structure, and
the consequent restriction that the scene must be non-
planar (and that there must be two cameras). Not only
does this improve accuracy, it is considerably faster.

2.3. The Planar Fundamental Matrix

A fundamental matrix F can be divided into its sym-
metric and antisymmetric parts,

F = Fa + Fs

where

Fa = 1

2
(F − F�), Fs = 1

2
(F + F�) ,

although the factors of a half are irrelevant since F
has arbitrary scale. Fs is a conic, and Fa is the skew-
symmetric matrix whose nullspace is a point xa (i.e.
Fa = [xa]×). Both Fs and xa have geometric interpre-
tations (Hartley and Zisserman, 2000).

For a planar motion, Fs is degenerate, and represents
the lines lh and ls (Fig. 6). From the form of such a
degenerate conic,

Fs = lhl�s + lsl�h . (1)

For a general motion Fs has full rank but for planar
motion it drops to rank 2. Since both F and Fs are rank
2, F now has only 6 degrees of freedom. xa lies on lh
and so it provides only one degree of freedom. The
other is contained in a variable θ related to the angle
between views. Vieville and Lingrand gave a minimal
parameterisation of a planar F matrix as Viéville and
Lingrand (1996)

F = sin(θ )[xa]× + (1 − cos(θ ))[lhl�s + lsl�h ], (2)

where the terms Fa and Fs can be clearly seen along
with their weights, sin(θ ) and (1 − cos(θ )).

A simpler parameterisation, described by Hartley
and Zisserman (2000), comes from the epipoles e and
e′. Figure 8 illustrates: a point x in the first image
lies on epipolar line l where l = e × x. This line in-
tersects ls at a point p = ls × l, which must also lie
on the corresponding epipolar line because ls is the
image of a line of fixed points. Therefore we find
l′ = e′ × p = e′ × (ls × (e × x)), or

l′ = [e′]×[ls]×[e]×x

⇒ F = [e′]×[ls]×[e]× . (3)
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Figure 8. Constructing epipolar lines using the fixed lines ls, lh,
and the epipoles. Extend the epipolar line l, which intersects the
point x and the epipole e, to meet ls. This intersection, p, is
the image of a fixed point (as are all points on ls), and so also lies on
the corresponding epipolar line l′.

Since Fs is rank 2 it has just 2 non-zero eigenval-
ues: λ0, which is negative, and λ1, positive, with cor-
responding eigenvectors v0 and v1. So Fs = v0λ0v�

0 +
v1λ1v�

1 . By examining this and Eq. (1) it can be shown
that

f1 =
√

λ1 · v1 +
√

−λ0 · v0,

f2 =
√

λ1 · v1 −
√

−λ0 · v0, (4)

where f1 and f2 are lh and ls, but which is which has not
yet been established.

In order to distinguish the fixed lines, the proxim-
ity of both epipoles to each could be tested, since the
epipoles lie on lh. In this work, however, the epipoles
are often poorly determined due to near-degenerate
conditions (the motion is close to a pure rotation for
which the epipoles are undefined). Instead, a method
not sensitive to the location of epipoles was used: find
the intersection of f1 and f2, xp = f1 × f2. Then use F
to find its epipolar line. Whichever of f1 and f2 most
closely matches this line must be lh. This is done al-
gebraically (ie. ‖f1 − Fxp‖ is compared to ‖f2 − Fxp‖,
the bar indicating use of normalised vectors)4.

2.4. The Planar Motion 2D Homography

Since a homography is a simple one-to-one mapping,
its fixed entities can be found trivially from its eigenval-
ues. A homographyHmust have either one or three real
eigenvalues, but it will only have three for certain spe-
cial conditions. Thus the eigenvector associated with
the real eigenvalue of the point transfer homography H
is the fixed point xv (see Fig. 6). The dual of this trans-
formation is the line transfer homography H−�. The
real eigenvector of this matrix is the fixed line lh.

Equivalently, the two complex conjugate eigenvec-
tors of H are complex invariant points that lie on lh.

Their real and imaginary parts (their sum and differ-
ence) are real points that lie on lh, so the intersection
of these can be used to find it. Similarly the complex
conjugate eigenvectors of H−� are lines that intersect
at the invariant point xv.

A pure rotation homography is trivially always a pla-
nar motion, since there is no translation component. A
plane-induced homography however can exist for any
motion. The interpretation of xv in this case is that it is
the image of the point at which the screw axis pierces
the scene plane. One important point is that a plane-
induced homography has a fixed line and a fixed point
regardless of the motion. If the motion is not planar, xv

has the same interpretation (ie. the image of the inter-
section of the plane and screw axis), but the fixed line
is no longer the image of the invariant line at infinity.5

2.5. Alignment Using Planar Image
Transformations

With the necessary tools for decomposing 2D trans-
forms into the relevant invariants, the algorithm for
alignment remains very simple:

Algorithm 2. Single Camera Alignment Algorithm
To align axis A with respect to axis B, first make a

motion about axis B, and obtain before and after im-
ages.

Calculate either a fundamental matrix F or 2D ho-
mography H relating the two images, using the method
of choice.

Calculate the image of the invariant line, lh. For H
it is the real eigenvector of H−�. For F, it is calculated
from the eigendecomposition of the symmetric part of
F, as described in Section 2.3.

Fixate a point on the line. Further iterations may be
required if the motion was large.

Calculating the image transformations was carried
out in our implementation using what is now a
fairly standard feature-based sequence (Hartley and
Zisserman, 2000): detection of Harris corners (Harris
and Stephens, 1988), robust two-view matching (Torr
and Zisserman, 2000), followed by non-linear opti-
misation of the closed-form algebraic solution using
Levenberg-Marquardt iteration. Any method could be
used, but a non-linear minimisation stage, while not
essential, has been exploited in this work not just to
improve results, but to measure accuracy, correct lens
distortion (Section 3.2), and allow the incorporation
of information from additional images (Section 4.1).
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In the case of aligning a camera on Yorick, it is sim-
pler to make a motion about the pan axis and calculate
one invariant line, then about the elevation axis and
calculate the other. Then fixate the intersection of the
two lines by rotating the elevation and vergence axes
only, which aligns the head in a single go.

Which of F or H applies depends both on the scene
and the motion. In the general case, where there is a
general scene and a general planar motion, the funda-
mental matrix applies (the F-method). If the rotation
axis passes through the camera centre (or sufficiently
close), as is generally the case for an active head, or
the scene is planar, then a homography applies (the H-
method). This is the degenerate case. The fundamental
matrix still exists (it is just underconstrained), and ex-
periments will show that the F-method works equally
well in either case, but is still outperformed by the H-
method under most circumstances. This turns out to
be true even when the H-method is used in the general
case, since a homography can still be calculated (it just
doesn’t fit the data as accurately).

3. Results and Analysis

3.1. Simulations

Thorough testing was carried out on both the general
and degenerate case algorithms. Figure 10 shows the
results of these tests.

The simulated camera had a focal length of 760 pix-
els, an aspect ratio of 1, and a principal point in the
centre of the image, which was size 640 × 480 pixels
— similar to the digital cameras used for real scene
tests. Variations on these parameters had little effect
on the quality of results, so they remained fixed. The
scene was populated with random points arranged in a
cuboid of random orientation. The cuboid was placed
3 metres away from the camera down the optic axis,
with dimensions of 4 metres in width and height, but
variable depth (relief) (Fig. 9). The camera was then
rotated about an axis of random orientation placed at a
fixed distance from the camera centre. Next the scene
was projected into the images at both camera positions,
and a fixed number of point matches extracted follow-
ing the addition of Gaussian noise.

There were a number of variables in the tests,
including standard deviation of the feature location
uncertainty (referred to as ‘image noise’),6 radial dis-
tortion, and depth (or relief) of scene. While one value
was being varied, the others were fixed to standard

Figure 9. The scene for single camera alignment simulations con-
sists of a random points in a cuboid volume filling the whole
view.

values, except where otherwise marked on the graphs.
Table 1 shows these standard values and the ranges of
the variables.

Radial distortion was modelled up to second or-
der, as is generally sufficient in vision applications
(Tordoff and Murray, 2000). The model used gives the
distorted points xd and undistorted points xu, in a coor-
dinate system whose origin is the centre of the image,
as

xd = xu√
1 − 2 κ‖xu‖2

f 2

xu = xd√
1 + 2 κ‖xd‖2

f 2

. (5)

The division by the square of the focal length f (in
pixels) is included so that the distortion parameter κ

becomes a dimensionless parameter independent of the
choice of image resolution. Typical values of κ are
in the region of −0.1 for a commercial camera with
unspecialised optics, or a pixel motion at the edges of
the image of about 4% of the image width.

For all our simulations, the y-axis shows a mean
error (in statistics, the ‘mean deviation’). This was
chosen over RMS error (standard deviation) because it
has a more direct relation to the expected accuracy of
the algorithm. However both are indicators of spread.
For the record, the error plotted closely tracked the
median, and the distribution could be characterised as
approximately Gaussian.

The simulation enforces somewhat harsh conditions,
since the axis of rotation is completely random, and the
axis being aligned is also a completely random vec-
tor perpendicular to that axis. Despite this the results,
shown in Fig. 10, are promising. Under typical condi-
tions, where we might typically expect to obtain more
than 300 matches and an image noise of around 1 pixel,
an error of around half a degree can be expected. The
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Table 1. Variable settings and ranges in the simulation tests of the single camera alignment routines.

Variable Standard value Minimum Maximum

Image noise standard deviation (pixels) 1.0 0.0 3.0
Angle of rotation (degrees) 10.0 1.0 30.0
Number of matched points 200 50 400
Radial distortion parameter κ 0 −0.2 0.2
Depth of scene cuboid (metres) 4 0 4
Distance between camera and axis (metres) 0.1 0.0 1.0

Figure 10. Results for the tests on simulated data. The blue (solid) line is alignment error when using the fixed line calculated from a
homography (H-method); the red (dashed) line is that from use of the fundamental matrix (F-method). The error measure is mean absolute
deviation. Default values of variables can be found in Table 1. The number of iterations made to obtain each point was 1000.

graphs also show what is to be expected, that small
numbers of matches and a small rotation will impair the
results. Note however that Fig. 10(b) shows that much
larger a rotation than about 20 degrees may in fact not
be beneficial, since the benefits of improved motion
constraints are offset by the reduced overlap between
images which means matched points only cover a small
part of the image, leading to poorer conditioning. This
can be expected to be emphasised in real scenes where
reduced overlap means fewer matches as well.

Also of interest is the apparent lack of effect of axis
offset for realistic values of the offset. It might be
expected that a non-negligible axis offset would be pre-

cisely when the (exact) F-method would outperform
the (approximate) H-method, and indeed the F-method
is better for values of offset greater than 20 cm (see
Fig. 10(f)). However a more typical value would be
10 cm (as it is in our robotic head, Yorick), and in
this instance in the presence of typical noise (1 pixel)
the H-method is clearly superior. Note, though, that
although degenerate for an offset of zero or a pla-
nar scene (zero scene relief), the F-method does not
fail catastrophically as might be expected from the
fact that the epipolar geometry cannot be calculated
uniquely. While some of the parameters of the ma-
trix become poorly conditioned (at the very least the
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image of the screw axis ls will not be determined cor-
rectly), the invariant line parameter lh remains stable,
demonstrated by the continued good quality of align-
ment at low offsets and low scene relief (Figs. 10(e)
and 10(f)).

Despite this, and the fact that it is only the F-method
that is theoretically capable of achieving a zero align-
ment error (as shown by Fig. 10(a)), the graphs suggest
that unless the axis offset is unusually high, the H-
method will always produce better results. This is un-
doubtedly because when the motion is near-degenerate
a homography is better conditioned than a fundamental
matrix.

3.2. Effect of Radial Distortion and Initial
Misalignment

Probably the biggest problem appears to be the sensitiv-
ity to radial distortion. While a camera with specialised
optics can expect to have a low distortion parameter
which places the alignment error in the region around
1 degree, a more ordinary camera, such as the digital
cameras used in this work, would appear to push the
error up nearer 5 degrees. In fact Fig. 10(d) shows
that distortion is the dominant factor in inducing error,
since the difference between zero noise and noise of 1
pixel is negligible for all but the lowest values of κ .

Tordoff and Murray (2000) shows how barreling dis-
tortion will have the effect of causing the focal length

Figure 11. Additional results for single camera alignment, showing the combined effects of initial alignment error and radial distortion. Once
again, the solid blue line shows results for the H-method, the dashed red line for the F-method. In graph (a) the image noise is 1 pixel, while in
the others it is zero. In each case the axis offset has been set to zero for the H-method and 10 cm for the F-method, to ensure that both algorithms
reach zero error for zero distortion.

to be over-estimated, with it potentially becoming infi-
nite for high distortions, and for it to be underestimated
under pin-cushion distortion. Distortion will therefore
have similar effects to zooming. Negative distortion is
like zooming in (paradoxically, since in fact it brings
points closer to the distortion centre), so the invariant
line will be pushed away from the centre of the image;
under positive distortion the opposite will occur.7 This
is underlined by the graph of Fig. 11(b), which shows
that distortion causes incorrect alignment even when
there is no image noise and the matches are therefore
perfect. The good news, however, is that this means
the distortion should have no effect when the camera
is already aligned.

The effect of initial misalignment is examined in
Fig. 11. It shows that the calculation does indeed be-
come more poorly conditioned as the initial misalign-
ment increases and the invariant line therefore moves
further away from the centre of the image, eventually
going off the image completely. The second graph,
Fig. 11(b), then shows that the effect of distortion is,
as expected, dependent on the initial misalignment, be-
coming essentially zero if the head happens already to
be aligned correctly. The graphs indicate that even if a
lower quality camera is used, the head alignment will
generally always be improved at each iteration of the
algorithm, meaning that in theory the head will eventu-
ally find the true alignment, regardless of the distortion.
Despite this it would be better to correct for distortion
if possible.
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Since κ is dependent on the camera lenses, it is quite
a stable parameter, so a value obtained from a prior cal-
ibration procedure can be expected to be usable for the
lifetime of a camera.8 Alternatively, κ can be corrected
at the non-linear minimisation stage of the calculation
of the fundamental matrix or homography, by the inclu-
sion of a single additional state parameter. Figure 11(c)
shows this with a comparison of the effect of radial dis-
tortion on alignment when ignoring κ .

κ was initialised at zero for self-correction, and in the
case of the H-method successfully removes the effect
of distortion. For the F-method the dependence on dis-
tortion is negated at the expense of an increased mean
error. However, the variance of the results was large,
and unless the axis offset was high there tended to be a
high proportion of excessively poor alignments result-
ing from wildly incorrect estimation of the distortion.
The conclusion is that when estimating a fundamental
matrix from just two images there simply are not suffi-
cient constraints to obtain a reliable value for the radial
distortion factor.

3.3. Results in Real Scenes

Simulation provides the thorough testing that no single
piece of hardware or small set of viewing conditions can
achieve. However, obviously simulation circumvents
the problems of occlusion affecting the distribution of
point data, and various other considerations.

The single camera algorithms were tested in the real
scene of Fig. 12, a fairly ordinary office environment.

Figure 12. Left: a view of the scene used for testing the algorithm. Right: an example of three images used to obtain the fixation point, with
the invariant lines, and (bottom right) the image after alignment.

This was chosen simply because it contains a range of
types of structure over a wide field of view. During
these automated tests the vergence and elevation axes
were those being aligned and their initial orientations
were randomised to an extent dependent on the exper-
iment being carried out. The pan axis, as the first axis
in the kinematic chain, could be reoriented between
tests without affecting the calculations; consequently
it was adjusted at random over a wide angle so that
the content of the scene being viewed was variable (as
Fig. 12 shows, from the viewpoint of the head, which
is at the bottom centre of the image, the scene varies
in content and relief over a good 60◦–90◦ of azimuth).
Both algorithms were tested on planar scenes as well
and it was evident that the F-method continued to work
under those circumstances as expected.

As well as the two algorithms, the tests were car-
ried out with a range of initial head positions, and a
range of rotation angles. The methods were also tested
with no correction for radial distortion, with detected
points corrected for distortion using an approximate
value for κ obtained from a camera calibration, and
with the algorithms attempting to correct the distortion
themselves at the minimisation stage. The camera used
in these experiments had quite a large radial distortion
(a motion at the corner of the image of about 4% of the
image width). The results are shown in Figs. 13 and
14. Each point represents the RMS error (adjusted for
sample bias) from fifty measurements, which is not sta-
tistically significant (hence the raggedness of the plots),
but is sufficient to get a reasonable idea of the quality
of results9.
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Figure 13. Results of real scene tests of the alignment algorithm, showing the effect of initial misalignment and level of correction of radial
distortion. The error measure here is RMS error from best case results (ground truth being unavailable). Self-correction of distortion for the
F-method was not robust enough to be viable, so those results are not shown.

In the case of variable initial head misalignment, the
graph abscissa is the magnitude of that angle in the
vergence and elevation axes (i.e.

√
θ2 + φ2), while the

direction of the initial position was random. While
this cannot be compared directly to the simulations,
it bears a similar relationship to relative position of
the invariant line and the image centre. During those
tests the rotation angle used was 10◦. When varying
the rotation angle the initial misalignment on each axis
was a random value between ±10◦.

In the absence of a robust and accurate method of
obtaining ground truth data, the ‘true’ aligned position
was taken from the very best results available during
the real scene tests, that is, the mean alignment posi-
tion for an initial misalignment of approximately zero,
a rotation of 10◦, and with radial distortion correctly
accounted for. Slight inaccuracy, or drift, in this value
may account for the error at zero initial misalignment
being slightly higher than that at 2◦.

If the fixation point lay off the image, the algorithm
would repeat up to a maximum of 4 iterations in to-
tal. The graphs show that correcting radial distortion is
quite crucial to ensuring successful and accurate align-

ment in a reasonable number of iterations. The worse
the initial alignment, the worse the effect of distortion.
If distortion is not corrected, a bad initial alignment will
result in such an erroneous invariant line that the sys-
tem may well get stuck in a loop of continuously over-
shooting the correct alignment. This was a common
cause of eventual failure, the rate of which is shown in
Figs. 13(b) and 13(d): either the maximum number of
algorithm iterations is reached, or the alignment will be
so poor that the cameras will be facing a texture-sparse
scene like the ceiling or floor, and will not obtain suf-
ficient matches to continue. Correcting distortion re-
moves this problem, and the success rate consequently
increases dramatically. Remaining failures usually oc-
curred when the randomised initial alignment resulted
in the images containing too little texture, or when the
minimisation routine’s residual error failed to achieve
a maximum threshold.

In summary, when the best algorithm is used we can
expect to be able to achieve alignments to within half a
degree, as long as radial distortion is small or corrected,
and as long as the process is allowed to iterate until fur-
ther alignments no longer move the head significantly.
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Figure 14. Real scene results showing dependence of the monocular algorithm on the angle of rotation.

The H-method still out-performs the F-method, de-
spite the variation in the depth of scene structure. This,
combined with the failure of self-correction of distor-
tion when estimating the fundamental matrix, leads
again to the conclusion that the H-method should be
used unless there is a good reason to use the funda-
mental matrix algorithm.

Figure 14 suggests that the alignment will sometimes
be improved by using an increased rotation. However,
higher rotation angles also experienced an increased
failure rate due to insufficient matches being obtained.
The best rotation angles would still seem to be around
10◦ to 15◦ for these cameras, or 20–30% of the image
width in general.

3.4. Conclusions for Alignment from Pairs of Images

In conclusion, an implementation of alignment should,
as a set of general rules: use the H-method; correct for
radial distortion where it is significant; iterate as long

as the misalignment continues to be greater than 5◦–
10◦; reject calculations where the number of matches
is too low or the residual error from the minimisation
routine is too high; and align ‘off’ images containing
significant texture.10 In addition, if it is possible to
provide an initial alignment by eye then doing so will
reduce the number of iterations required to align the
head; alternatively a rough alignment can be achieved
using direct methods: axis A is aligned with respect to
axis B when the rotational component of optic flow is
minimised during motion about B.11

Sources of Error. Our tests show that radial distor-
tion is the greatest source of error, hence the need to
correct for it. However, once this is done we are still
limited by the digital and optical resolution of the cam-
era, and by the nature of the scene, all of which affect
our ability to localise invariant features for matching.

Figure 10(a) tells us that where this matching noise
is the only source of error, at around 1 pixel standard
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deviation we can expect about 0.5◦ error: compare the
real scene tests in Fig. 13(a), which show a similar
error for a roughly pre-aligned head. It is possible,
then, that the system was exhibiting around 1 pixel of
error, just about that expected from digitisation alone.
Consequently, one route to improving accuracy would
be to use a higher resolution digital camera.12

Note again that these results are for two views per
aligned axis only. Improved accuracy can be obtained
by combining image features from multiple motions of
the camera, as is now discussed.

4. Extensions to Incorporate Further Motions

Perhaps the simplest way to use additional images and
motions is to take the mean alignment position over
multiple independent tests.

Figure 15 demonstrates the viability of this tech-
nique. In Fig. 15(a) we see that continued iteration
does improve alignment even in the presence of radial
distortion, as expected. Figure 15(b) shows that once
the major initial misalignment is removed, averaging
does result in convergence to the true alignment. The
graphs show the 95th percentile alignment error, which
removes some unusually high errors that crop up dur-
ing simulation due to unrealistic configurations, but
otherwise effectively represents a guaranteed level of
accuracy after the relevant number of iterations. The
exception is the F-method which cannot provide these
guarantees unless there is high positive distortion (the

Figure 15. Convergence when averaging over multiple independent alignments. In (a), simulation results for different levels of radial distortion
demonstrating that iterating will always improve the alignment. In (b), simulation results from multiple tests of 10 iterations following removal
of the initial bias. Each line of the same colour represents a different level of radial distortion, varying evenly between ±0.2. The solid lines are
for the negative distortions and the dashed lines for the positive distortions. The thick black line is for zero distortion (this line for the F-method
is mostly off-scale). (If graphs are being viewed in grayscale, it suffices to note that convergence is good regardless of distortion, except for the
F-method and negative distortion.) In (c), convergence in real scenes from a single long test.

resulting undershoot providing a stabilising influence).
Despite this the median error for the F-method is, like
the H-method, around 0.1◦.

In Fig. 15(c) we then see how this translates into
real scenes, with a slow convergence over many it-
erations. We also confirmed that the distribution of
alignment positions was unbiased even in the pres-
ence of distortion, and that the mean and mode of
this distribution lay in the same place whether or not
the distortion was corrected. Radial distortion does of
course produce bias (towards or away from the true
alignment), but over multiple iterations this is negated
because noise eliminates dependence on the starting
orientation.

While averaging is a statistically sound solution
when carried out over a large number of iterations, it
is somewhat ad hoc, and places equal weight on each
iteration regardless of the quality of the solution it pro-
vides. For each motion we recalculate the F/H matrix.

However each motion of the head is identical, except
for one free parameter (the angle of rotation). There-
fore it makes intuitive sense to exploit this by parame-
terising the motions (i.e.the F/H matrices) explicitly to
encode this fact. We explore this below.

4.1. Batch Minimisation

Our aim is to parameterise the motion in terms of the
fixed entities. In the camera coordinate frame, the only
parameter of the motion that is varying is the angle of
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Figure 16. Illustrating how multiple planar motions about the same axis result in images with the same invariant line (i.e.in the same image
position). Note also that the screw axis projects to the same line (or point) in each image.

rotation. In our case the (horizon) line lh is invariant.
This quantity is precisely what we seek for alignment,
and therefore our aim in this section is to parameteriseF
and H in terms of lh. This can then be shared between
views and some or all of the others allowed to vary.
By doing so we expect to obtain a better conditioned
problem.

Multiple Image General Case Alignment. In Sec-
tion 2.3 two parameterisations of a planar fundamental
matrix are described. The Vieville and Lingrand pa-
rameterisation (Viéville and Lingrand, 1996) includes
ls and lh, which is desirable, but also involves trigono-
metric functions and the somewhat obscure θ parame-
ter; while Hartley and Zisserman (2000) suggest using
ls and the epipoles. We compromise by parameter-
ising the epipoles in terms of ls and the fixed line lh
(the epipoles lie on lh), so that lh becomes one of the
parameters of the simpler Hartley and Zisserman form.

To do this, first note that any linear combination of
two points x1 and x2 must lie on the line between the
two points, l = x1 × x2:

x3 = αx1 + βx2

⇒ l�x3 = αl�x1 + βl�x2

⇒ l�x3 = 0

This also means that any point x3 on l can be parame-
terised in terms of x1 and x2, even if x3, or one of x1 or
x2, is at infinity.

So to parameterise the epipoles e and e′ in terms of
the fixed lines, obtain the intersection of ls and lh, xs =
ls × lh. Next obtain another point on lh perpendicular to
that, xp = xs×lh (see Fig. 17). Now find the parameters
α, β, α′ and β ′ from the following, ensuring xs and xp

Figure 17. When parameterising the epipoles in terms of the lines
ls and lh, use their intersection xs, and a point on lh perpendicular to
this, xp. As long as the two lines, which can be seen as representing
vectors perpendicular to the planes that pass through them and the
camera centre, have consistent directions (which can be ensured in
the minimisation routine), then xp will always be calculated on the
same side of xs.

are normalised so that x�
s|pxs|p = 1:

e = αxs + βxp e′ = α′xs + β ′xp

⇒ α = x�
s e, β = x�

p e α′ = x�
s e′, β ′ = x�

p e

The resulting parameters for the fundamental matrix
are ls, lh, α, β, α′ and β ′, and F can be obtained from
these as

F = (α′[ls]×lh + β ′[ls]×[lh]×lh) × ls × (α[ls]×lh

+ β[ls]×[lh]×lh).

lh is to be shared between all the motions about the
same axis. ls could also be shared since the screw axis
has not moved. However it was found empirically to
be insufficiently well constrained, so better results were
obtained by allowing it to vary.
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Multiple Image Degenerate Case Alignment. The
simplest way to parameterise a sequence of planar mo-
tion homographies is to share the eigenvectors while
allowing the eigenvalues to alter. The eigenvectors
represent the fixed line and fixed point, both of which
will be unchanged during a motion about the same
axis. The eigenvalues represent the scale of the matrix
(which is irrelevant and will be ignored by Levenberg-
Marquardt) and the angle of rotation.

A homography will have two complex eigenvalues
and eigenvectors, but they will be conjugate, so it is
only necessary to store the real and imaginary parts of
one. The complex eigenvalue is further constrained.
If the real eigenvalue (representing the scale) is λ1 and
the complex eigenvalues are λ2 and λ3, then λ2 = λ1eıθ

and λ3 = λ1e−ıθ , where θ is the angle of rotation. If
this constraint is not expressed the homography may
become biased, so it is preferable to record only λ1 and
θ as unshared parameters.13

Since in general the homography is only an approx-
imation to a pure rotation (due to the offset of the rota-
tion axis), there is no guarantee that any of the eigen-
vectors are genuinely fixed. Despite this, tests showed
that the fixed entities do not move significantly between
motions, and there are distinct advantages to sharing all
the eigenvectors between motions for any realistic axis
offset value.

Multiple Motion Implementation and Results. Our
implementation involves the system making several
motions about the same axis, and obtaining the F/H
matrices for each rotation. One of the calculated
transforms is then used to find an initial guess for the
invariant line, which is the starting point for a bundle

Figure 18. Results for the tests of monocular multiple motion alignment with synthetic data. Results for the H-method are shown in solid blue,
with dashed red for the F-method. Dot-dashed lines show the effect of radial distortion correction using an initial value of zero.

adjustment over the line parameters and remaining
free parameters.

In practice, Yorick has a limited vertical field of view,
particularly indoors (due to the sparsity of scene fea-
tures above and below) which might limit the accuracy
of vertical alignment. However, when making eleva-
tion motions the pan axis can be rotated towards dif-
ferent parts of the scene without affecting the position
of the invariant line (due to the order of the kinematic
chain).

The set-up for tests of the multiple motion algorithms
on synthetic data was identical to that for a single mo-
tion. Variables were the number of motions, the an-
gle of rotation for each motion, and the radial distor-
tion. Generally the axis offset was a randomised value
between zero and 0.4 m, a realistic maximum range.
However for the radial distortion experiment the axis
offset was set once again to 0.1 m, for comparison with
the single motion tests.

The results are much as expected, with additional
motions improving alignment. The H-method has a
minimum error related to the axis offset. However it
still outperforms the F-method, which itself does not
appear to be tending towards a perfect result in the limit.
In fact the graphs of Fig. 18(a) are consistent with those
for varying number of point matches of Fig. 10(c), sug-
gesting that whether additional matches are obtained
in a single pair or from multiple pairs of images, noise
places a limit on the achievable accuracy14.

Figure 18(b) shows that good results can be obtained
even with small rotations. This is advantageous, since
in a real scene the increased overlap for a small rotation
provides a greater number of matches, as well as better
conditioning.
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It is interesting to note that multiple motions do not
help with the problem of radial distortion (Fig. 18(c)),
however self-correction of distortion is improved. Self-
correction is still poor for the F-method, although over
large numbers of moves it could be expected to become
accurate. However, once again, in the general case for a
typical pan-tilt unit, there appears to be little advantage
in theF-method, despite its theoretical greater accuracy
in the limit.

Real tests were carried out on the same scene as
before (Fig. 12). The camera was rotated by 5◦ alter-
nately about the pan and elevation axes. Several tests
were done at different initial positions, and some typi-
cal examples are shown in Fig. 19.

As expected, the tests showed a general improve-
ment with the inclusion of additional images, and an
improvement in the radial distortion detected using
self-correction. In addition, this method reduces the
reliance on making a large rotation for each motion,

Figure 19. Some results for different real scene test runs using multiple images, showing the general trend towards an improved alignment,
regardless of the initial accuracy from a single motion. The dotted red line is an example of an F-method alignment for which the minimisation
occasionally failed to converge to a good value for the distortion.

and on obtaining large numbers of matches in each pair
of images. It has advantages over simple averaging of
accuracy as well as a more meaningful weighting of
the data from each motion.

An Aside on Dual Model Minimisation. An interest-
ing point to note is that the invariant line lh is a param-
eter shared by both the homography and fundamental
matrix, and could possibly be used to provide addi-
tional constraints on both. There are many scenarios in
which both types of transformation can be calculated,
but neither are well constrained; this is particularly true
of active heads, which make near-degenerate motions,
and of near-planar scenes.

In this dual model minimisation the fundamental ma-
trix would be parameterised as before in terms of lh, ls,
and the epipoles; the homography would be parame-
terised using the eigendecomposition of H�, the inverse
line-to-line mapping, so that lh is the real eigenvector.
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If we use reprojection error or its approximation the
Sampson error (Sampson, 1982) for our cost func-
tions, then the costs of H and F can be summed because
they both represent image distances between measured
points and their ‘true’ positions.

5. Summary and Conclusions

In order to be able to use an active camera as a mea-
suring device it must be possible to obtain pointing
directions referred to a fixed coordinate frame. Any
mechanical method of specifying the origin of this
frame suffers from being hardware-specific, to the
extent that the camera itself must have a strongly fixed
mounting on its robotic platform. It also requires pre-
cision engineering, which counters the trend towards
using cheaper products and compensating for hard-
ware deficiencies in software. Image-based methods
get around these problems, but most of the solutions
involve carrying out a complete kinematic calibration
of the device (Li, 1998; DeSouza et al., 2002; Ma,
1996; McLauchlan and Murray, 1996; Hayman et al.,
2000). This is generally overkill, with a complex
implementation and requiring lengthy processing.

In this paper we have presented an image-based so-
lution which solves only for the relevant alignment pa-
rameters from a bare minimum of input images, doing
so using a fast and robust algorithm that places no con-
straints on the viewing conditions, other than the pres-
ence of sufficient texture for image correspondence to
be feasible. The system has been tested thoroughly,
and we have demonstrated how to handle the problem
of non-linear lens distortion, and how to improve accu-
racy by incorporating the information from additional
images.

Notes

1. The qualification “that control gaze direction” is used to exclude
cyclorotation which, if controllable, has a related natural origin
defined by the other axes, therefore evading a completely gen-
eralised definition. The cyclotorsional orientation of the camera
is defined by its image plane (here, the x-axis); cyclorotation is
zero when this axis is perpendicular to a vertical head axis (pan);
or its normal (the y-axis if there is no skew) is perpendicular to
a horizontal head axis (elevation). Alignment of a cyclotorsion
axis is not tested in this paper, but our algorithm is perfectly ca-
pable of achieving this, and Section 2 addresses the necessary
implementation.

2. In this paper ‘pan’ and ‘verge(nce)’ refer to the vertical head
axes, i.e. those controlling azimuthal gaze, with pan being the
principal azimuthal axis (and usually first in the kinematic chain),

and vergence generally only being present for binocular arrange-
ments. ‘Elevation’ and ‘tilt’ are used interchangeably to mean a
horizontal axis controlling the elevation of the gaze direction.

3. The problem of fixating an image point without first knowing the
head and camera calibrations can be addressed using simple dis-
crete closed-loop control. The gain of the controller is adjusted
at each iteration by using correlation to measure the image dis-
tance moved under the previous input (Knight and Reid, 2000a;
Knight, 2002).

4. It should be noted that no failures were detected in this matching
algorithm which were distinguishable from general failures due
to insufficient constraints on F.

5. The fixed line in this case has no simple geometric representation.
In all cases it is the line between the two intersection points of
the horopter curve (Maybank, 1993) and the scene plane. In the
general case (non-planar motion including translation) this line
is dependent on the amount of rotation as well as the position
and orientation of the rotation axis. A special case for which
the invariant line remains as the horizon line of the plane of
the motion was exploited for camera calibration in Knight et al.
(2003).

6. Image noise here is more correctly viewed as the combination
of noise in the sensor, and the view-dependent bias inherent in
feature detection.

7. We should therefore expect the alignment error to asymptote for
some value of large negative distortion, but tend to the initial
misalignment for high positive distortion.

8. κ does of course change with zoom, so it would need to be
calibrated at each zoom position that might be used when aligning
the head.

9. RMS error is used here, as opposed to mean deviation, because
it provides a smoother indication of spread for limited sample
size. Since we cannot obtain ground truth other than by using
the best results available, we are restricted to providing a measure
of spread to indicate repeatability.

10. If scene texture is sparse it may be possible to calculate optical
flow but not a sufficient number of localised features: this gives
further advantage to the H-method, since a homography can be
estimated using optic flow.

11. This is the same as minimising the cyclotorsion component of
camera motion, as in the method of Hayman et al. (2000).

12. This would also improve the accuracy of the fixation algorithm,
localisation of image features in each case being interrelated.

13. If the homographies are divided through by λ1 then it may be
discarded and assumed to be 1 in each case, but a minimal pa-
rameterisation is not essential, neither is it advisable because it
complicates the error surface of the cost function (Hartley and
Zisserman, 2000).

14. This limit is around 0.2◦ for our setup, but would be improved
with a higher resolution camera as suggested in Section 3.4.
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